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NLP Task
Language    
      ≈  
Data Set

A Language Model is a simplified representation of a language which 
facilitates an NLP task, where
• A language (potentially infinite) is approximated by a (finite) data set; 

and
• The model is a set of (simplified) assumptions about the language, 

embodied by the algorithms and data structures of your program.  

Model
Code: Custom
Python, Naive
Bayes, Logistic
Regression, CNN,
RNN, LSTM,
 Transformer, LLM, …

Language Models



NLP systems rely on models to capture knowledge of about a language, and as a 
representation for texts which facilitate an NLP task.   

Example:  Context-Free Grammars (Chomsky, Backus-Naur)

(But we won’t be using CNFs in this course!)

Language Models



Language Modeling:  Word Representations

Before diving into the subject of Language Models, let’s prepare a bit by 
talking about an essential component of language modeling…

Last time we discussed how to represent characters, as integer ASCII 
codes in the range [0 .. 127].   But how do we represent words?

Bad idea:   word = sequence of ASCII codes    

Why is this bad?  
         

o Variable length, 

o Information contains confusing correspondences:

             “to” very similar to “too”       “dog”  same chars as  “god” 

(Neural networks will find these difficult to learn.)



Language Modeling:  Word Representations

There are two principal representations, both based on constant-length 
arrays (or vectors).

o One-Hot Encoding

o Word Embedding (we’ll do these in a few weeks)

We’ll generally call 
sequences/lists/arrays 
by the standard term 
vector. For simplicity, 
we often write them 
as Python lists here. 



Language Modeling:  One-Hot Encoding for Words

Basic Idea of One-Hot Encoding:

o Create a vocabulary list of length N of all distinct words in the text 
(the ordering is fixed but arbitrary). 

o The representation of the kth word in the list is an array/vector of N 
integers, with a 0 in every position except for a single1 in position k. 

Example:    “John likes to watch movies. Mary likes movies too.”

Vocabulary list:   [ “John”, “likes”, “Mary”, ”movies”, “to”, “too”, ”watch” ]
                                  0        1           2             3         4      5         6

One-Hot Encodings: 

           “movies” [ 0, 0, 0, 1, 0, 0, 0 ]

            “likes” [ 0, 1, 0, 0, 0, 0, 0 ]

Plus:
• vectors have same length; 
• spelling is irrelevant.
Minus: 
• very long vectors (typically 

10,000 or more)

“one-hot” = only 
one bit is “hot” 
at a time



Examples of Models:  Bag of Words (BOW)

The BOW model represents a text  (sentence, sequence of words, entire corpus) as 
a multiset (bag) of all words in the text, i.e, just the vocabulary, no information about 
order of words! 

Text:    “John likes to watch movies. Mary likes movies too.”

Vocabulary list:   [ “John”, “likes”, “Mary”, ”movies”, “to”, “too”, ”watch” ]
                                    0        1           2             3         4      5         6

BOW model of text:  [ 1,        2,          1,            2,         1,     1,        1      ]

Alternate BOW representations:

• We might only consider the presence (0/1) of a word, not its frequency (as if “Set of Words”);

• Since most BOW vectors are sparce, we might want to store them as a dictionary:
 
                { "John” : 1, "likes” : 2, "to” : 1, "watch” : 1, "movies” : 2, "Mary” : 1, "too” : 1 } 

Language Models:  Bag-of-Words Set = unordered collection 
without duplicates

Bag/Multiset = unordered 
collection with possible 
duplicates



Question: What is the relationship between One-Hot Encodings and a BOW model?

Language Models:  Bag-of-Words

+



Examples of Models:  Bag of Words (BOW)

Question: What is the relationship between One-Hot Encodings and a BOW model?

Answer:      The BOW model of a text is the array sum of the one-hot encodings:

            “John”             [ 1, 0, 0, 0, 0, 0, 0 ]
            “likes”              [ 0, 1, 0, 0, 0, 0, 0 ]
            “to”                  [ 0, 0, 0, 0, 1, 0, 0 ] 
            “watch”            [ 0, 0, 0, 0, 0, 0, 1 ] 
            “movies”          [ 0, 0, 0, 1, 0, 0, 0 ]
            “Mary”             [ 0, 0, 1, 0, 0, 0, 0 ]            
            “likes”              [ 0, 1, 0, 0, 0, 0, 0 ]
            “movies”          [ 0, 0, 0, 1, 0, 0, 0 ]
            “too”                [ 0, 0, 0, 0, 0, 1, 0 ]

                                    [ 1, 2, 1, 2, 1, 1, 1 ]

Language Models:  Bag-of-Words

+



Probabilistic Language Model: Assign a probability to text 
components (letters, words, sentences, ....)   

This is very useful to work with the ambiguous nature of human 
languages, and very amenable to computation:

“Given K choices for some ambiguous input, choose the most 
probable one.”

“I went to they’re house on Sunday.”

there                   they’re                             their

Which is most likely?

Language Models:  Probabilistic Language Models



Vector space models use a vector in M-dimensional space to represent
o Words, 
o Sentences, and
o Texts. 

pasta, lamb, 
cheese, mushroom

citrus, apple, 
orange, lime

aromatic, nose,
scent, perfume

Language Models:  Vector Space Language Models

This is the current 
SOTA (“State Of The 
Art”) for language 
modeling. Much 
more on these later!



Probabilistic Language Models

Main Idea of PLMs: Assign a probability to a sequence of words.  Why? 

Machine Translation:
 
     P(high winds tonight) > P(large winds tonight)

Spelling Correction:

       The office is about fifteen minuets from my house

       P(about fifteen minutes from) > P(about fifteen minuets from)

Speech Recognition:

                 P(I saw a van) >> P(eyes awe of an)

Summarization, Q&A, etc. 



The main task: compute the probability of a sentence or sequence of words:

     P(W) = P( w1,w2,w3,w4,w5…wn )

Subtask: compute the conditional probability of the next word

      P( w5 | w1,w2,w3,w4 )                  “The weather is ? “

A model that computes either of these:

          P(W)     or     P( wn | w1,w2…wn-1 )          

is called a probabilistic language model (often, just “language model” ). 

Probabilistic Language Models



You have seen these before!

 

More probable.

Probabilistic Language Models



Probabilistic Language Modeling

It is possible to apply this framework to any sequence, e.g., 

• Letters in a word; *

• Pitches in a melody; 

• Phonemes in a voice signal;

• Sentences in a paragraph; or

• Topics in a discourse. 

* This was actually the first use of this model by Markov (1913) as an example of the new 
concept of Markov Chains; also used by Shannon (1948) in his foundational paper on 
Information Theory.    It is possible to apply this model to spell check (a good project!). 



How to compute P(W)?

How to compute this joint probability:

P( I went to their house on Sunday )

Intuition: let’s rely on the Chain Rule of Probability

Probabilistic Language Modeling



Calculating Probabilities

Recall the definition of conditional probabilities

p(A|B) = P(B,A) / P(B) Rewriting:   P(B,A) = P(B) * P(A|B)

For this LM, we will think of 
B,A as a sequence:

B happens, then A happens. 

Thus, P(A|B) = “given that B 
has happened, what is the 
probablity that A happens”?



§ Recall the definition of conditional probabilities

p(B|A) = P(A,B) / P(A) Rewriting:   P(A,B) = P(A) * P(B|A)

§ More variables:

 P(A,B,C,D) = P(A) × P(B|A) × P(C|A,B) × P(D|A,B,C)

§ General Chain Rule:

§ P(x1,x2,x3,…,xn) = P(x1) × P(x2|x1) × P(x3|x1,x2) × … × P(xn|x1,…,xn-1)

Calculating Probabilities



The Chain Rule applied to compute joint probability of words in sentence:

                 “I went to their house on Sunday.”

P( I went to their house on Sunday. ) =

      P( I ) × P( went | I ) ×  P( to | I went ) ×  P( their | I went to )

  ×  P( house | I went to their ) × P( on | I went to their house )

  x  P( Sunday | I went to their house on )

  

€ 

P(w1w2…wn ) = P(wi |w1w2…wi−1)
i
∏

1 ≤ 𝑖 ≤ 𝑛

Calculating Probabilities



How to estimate these probabilities?

Could we just count and divide?

P( Sunday | I went to their house on )    =

Count( I went to their house on Sunday ) 

        Count( I went to their house on ) 

Calculating Probabilities



Can we just count? Not realistic:

In an infinite set of sentences, the probability of any distinct sequence of words 
is 0.  So a data set is a small sample which hopefully represents the essential 
features of the language. 

But realistic data sets never have enough sample sequences, and sequences 
might be very long or simply not exist in your data. 

“I have been here before,” I said; I had been there before; first with Sebastian more than twenty years ago on a 
cloudless day in June, when the ditches were white with fools’ parsley and meadowsweet and the air heavy with all 
the scents of summer; it was a day of peculiar splendor, such as our climate affords once or twice a year, when leaf 
and flower and bird and sun-lit stone and shadow seem all to proclaim the glory of God; and though I had been there 
so often, in so many moods, it was to that first visit that my heart returned on this, my latest.”     Evelyn 
Waugh: Brideshead Revisited, first sentence. 

Calculating Probabilities



Markov Assumption:  Finite history! 

Only consider N-1 words

of left context, for some fixed N.

So, if N = 2 
         I went to their house on Sunday

   I went 
     went to
               to their

                           their house 
                                     house on 
                                          on Sunday

Andrei Markov

Terminology: An
N-Gram is a sequence 
of N contiguous words 
from the data set. 

unigram = 1-gram, 
bigram = 2-gram, 
trigram = 3-gram, etc. 

Calculating Probabilities



Markov Assumption:   

Only consider N-1 words

of left context, for some fixed N.

If N = 3 
         I went to their house on Sunday

   I went to
     went to their
               to their house

                           their house on
                                     house on Sunday

Andrei Markov

Calculating Probabilities



Markov Assumption: Only consider N-1 words of left context.

Thus, for a sequence of length M,

For small N, it is reasonable to count the number of N-Grams. 
Typical values are 1 ≤ 𝑁 ≤ 5.	 It is usual to add a beginning <s> and 
ending token </s> to sentences.

Calculating Probabilities



Bigram Example (N = 2)

P( <s> I went to their house on Sunday </s> )=
      P( I |<s>) × P( went | I ) ×  P( to | went ) ×  P( their | to )
  ×  P( house | their ) × P( on | house )
  x  P( Sunday | on) x  P( </s> | Sunday )

Note that this calculation 
involves finding the number of 
occurrences of an N-gram and 
of an (N-1)-gram (the prefix)!

Calculating Probabilities



Trigram Example (N = 3)

P( <s> I went to their house on Sunday </s> )=
      P( I |<s>) × P( went | I ) ×  P( to | went ) ×  P( their | to )
  ×  P( house | their ) × P( on | house )
  x  P( Sunday | on) x  P( </s> | Sunday )

Calculating Probabilities



Remarks:   
This is almost trivial to code after you have separated your text into words and 
sentences. 

For small N, it will be reasonably efficient.

BUT, it does NOT capture the recursive/nesting structure inherent in complex 
sentences:

My friend Bill, who went to the same high school that I did –Pennsbury, which is 
in Fairless Hills in PA—lives  in his car, and he called me yesterday (or the day 
before, I forget). 

Calculating Probabilities



An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

Calculating Probabilities



Google Book N-grams

§ https://books.google.com/ngrams 

https://books.google.com/ngrams


Google Book N-grams

§ https://books.google.com/ngrams 

https://books.google.com/ngrams


A clever feature of this model is that it can easily generate sentences. 

For bigrams, after calculating the probability of all bigrams appearing in the data. 

Pick a probable* bigram <s> w1
Pick a probable bigram w1 w2
.... etc. ...
End when you generate a bigram  wk </s>

* You may not want to always choose the most likely, or you will not be able to 
generate many sentences!   So choose randomly from the probability distribution 
of next words. 

Generative Language Models



Optional: An Important Practical Issue:

§ We do everything in log space!
§ Avoid loss of precision from underflow (prob 𝑝 might 

be tiny)
§ Adding is much faster than multiplying
§ log is monotonic, so it preserves order for 

probs (𝑝 ≥ 0):
        𝑝 < 𝑞	 ↔ 	 log 𝑝 < log(𝑞) 
§ Can easily recover probs using  exp(...)

log(p1 × p2 × p3 × p4 ) = log p1 + log p2 + log p3 + log p4


