CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture 4: Language Models, Bag-of-Words, N-grams, Skip-Grams

Language Models

A Language Model is a simplified representation of a language which
facilitates an NLP task, where

 Alanguage (potentially infinite) is approximated by a (finite) data set;
and

« The model is a set of (simplified) assumptions about the language,
embodied by the algorithms and data structures of your program.

Model
/ \ Code: Custom
Language Python, Naive

- Bayes, Logistic

-~ » Regression, cNN, =—> NLP Task
Data Set RNN, LSTM,

Transformer, LLM, ...

Language Models

NLP systems rely on models to capture knowledge of about a language, and as a
representation for texts which facilitate an NLP task.

Example: Context-Free Grammars (Chomsky, Backus-Naur)

hierarchical

* S->SA d of bbeb parse tree
erivation ebee
S->A : |S
A -> bSe p |
A ->be bSe
bSAe /I\
b S e
bAAe
: bbeAe VAN
Example: b and e matched PR
as parentheses bbebee \ /\
A b e
b e

(But we won'’t be using CNFs in this course!)

Language Modeling: Word Representations

Before diving into the subject of Language Models, let’s prepare a bit by
talking about an essential component of language modeling...

Last time we discussed how to represent characters, as integer ASCII
codes in the range [0 .. 127]. But how do we represent words?

Bad idea: word = sequence of ASCII codes
Why is this bad?
o Variable length,
o Information contains confusing correspondences:

“to” very similar to “too” “‘dog” same chars as “god”

(Neural networks will find these difficult to learn.)

Language Modeling: Word Representations

There are two principal representations, both based on constant-length
arrays (or vectors).

o One-Hot Encoding

Color Red Green Blue
Red 1 0 0
Green ey | O 1 0
Blue 0 0 1
Green 0 1 0

o Word Embedding (we’ll do these in a few weeks)

O
walked
@
We’'ll generally call
: Swam sequences/lists/arrays
siking
o by the standard term
G Tt vector. For simplicity,
-~ sulmming we often write them

as Python lists here.

Language Modeling: One-Hot Encoding for Words “one-hot” = only

one bit is “hot”
at a time

Basic Idea of One-Hot Encoding:

o Create a vocabulary list of length N of all distinct words in the text
(the ordering is fixed but arbitrary).

o The representation of the k" word in the list is an array/vector of N
integers, with a 0 in every position except for a single1 in position k.

Example: “John likes to watch movies. Mary likes movies too.”

Vocabulary list: [“John”, “likes”, “Mary”, "movies”, “to”, “too”, "watch”]
0 1 2 3 4 5 6
One-Hot Encodings: Plus:
« vectors have same length;
“movies” ©—p [0,0,0,1,0,0,0] « spelling is irrelevant.
Minus:

very long vectors (typically

“likes” —» [0,1,0,0,0,0,0] 10,000 or more)

Set = unordered collection

Language Models: Bag-of-Words without duplicates
Bag/Multiset = unordered
Examples of Models: Bag of Words (BOW) gollcla_ctut)n with possible
uplicates

The BOW model represents a text (sentence, sequence of words, entire corpus) as
a multiset (bag) of all words in the text, i.e, just the vocabulary, no information about
order of words!

Text: “John likes to watch movies. Mary likes movies t0o.”

Vocabulary list: [“John”, “likes”, “Mary”, "movies”, “to”, “too”, "watch”]
0 1 2 3 4 5 6
BOW model of text: [1, 2, 1, 2, 1, 1, 1]

Alternate BOW representations:

We might only consider the presence (0/1) of a word, not its frequency (as if “Set of Words”);

« Since most BOW vectors are sparce, we might want to store them as a dictionary:

{"John” : 1, "likes” : 2, "to” : 1, "watch” : 1, "movies” : 2, "Mary” : 1, "too” : 1 }

Language Models: Bag-of-Words

Question: What is the relationship between One-Hot Encodings and a BOW model?

Language Models: Bag-of-Words

Examples of Models: Bag of Words (BOW)

Question: What is the relationship between One-Hot Encodings and a BOW model?

Answer. The BOW model of a text is the array sum of the one-hot encodings:
“John” [1,0,0,0,0,0,0]
“likes” [0,1,0,0,0,0,0]
“to” [0,0,0,0,1,0,0]
“watch” [0,0,0,0,0,0,1]
“‘movies” [0,0,0,1,0,0,0]
“Mary” [0,0,1,0,0,0,0]
“likes” [0,1,0,0,0,0,0]
“‘movies” [0,0,0,1,0,0,0]
“too” [0,0,0,0,0,1,0]

[1,2,1,2,1,1,1]

Language Models: Probabilistic Language Models

Probabilistic Language Model: Assign a probability to text
components (letters, words, sentences,)

This is very useful to work with the ambiguous nature of human
languages, and very amenable to computation:

“Given K choices for some ambiguous input, choose the most
probable one.”

‘I went to they’re house on Sunday.”

— 1T

there they’re their

Which is most likely?

Language Models: Vector Space Language Models

Vector space models use a vector in M-dimensional space to represent

O

O

Words,

Sentences, and
Texts.

st
lamBastg
o St
o * “Hhndy

chees

mushtoory Emfwmmf

pai
accompag "¢ My desset
complement e
¥ g e
aip i a T g
) g 2 ‘eve,emmm‘ax =3
) i gy s i s aog
e i esh I ke "AGrvest
ey ooy Sgny L2 sy o0yt
"GPW iri REFRYgni d | eagl .
Q“"m“”q Sreep “ W aigfe ﬁ&%m ik
rinegopTime 9 g -
L ey
ip"fzm edug, velsdg “"W ng’ﬂgbx(g\mho .g%m g
L gy smm & oo dev!bf 'edvogwmmg arang Vg
el
* cami vo\um ﬁ\vkgtgvs r)mnl 'EW' fami &A‘ne)a@m
o e creanlo ga‘w fil "Evgm ity ooty w“w 2l
: e m"ﬂ‘mw Uit matgsp vitag I Hbadgeles
K oot aopty S0y B8 outon® 3
gum wgd w‘«ﬁsgugm %

Sontgagadiily]
hep 9 enfg i © gerf@meley o wsg S o ?éaw;

WW: ol e,

. SOV
spigi veaitnel flayor togetp comg ™ Sty W,m,
V&;mke ‘-@u?b A oy mass brig.| o'y
ragmolf W4 folog * .
i cinnam; ighipe P% u"cmnen !qugmm\ﬂkidtl\end v Sme” iRy
. SRogigfd | Mrong” wve “wngg g
“”“%nmmuﬁe y i exgiminer, ¢ el b hang
- e T
w-%m e hinnowal mgm;H ug el ey
* Swig rom: presglassic,. |
e zméWf"f" e rfieg weingy™ v barrel
Dledgioghlackeuy g rcan Mostpinless
T TR g g TN
raspberri dark pale flavoyr *
. e Charags
srafberg ¥ %
gornet cofly
M fenach petit W&
| WS
purg))
i coey mw@,? ‘
e caBernefnerigl
sangiotes werdg

w%ﬁ‘@“ﬁ

valley

mi}ae

This is the current
SOTA (“State Of The
Art”) for language
modeling. Much
more on these later!

Probabilistic Language Models

Main Idea of PLMs: Assign a probability to a sequence of words. Why?
Machine Translation:

P(high winds tonight) > P(large winds tonight)
Spelling Correction:

The office is about fifteen minuets from my house

P(about fifteen minutes from) > P(about fifteen minuets from)
Speech Recognition:

P(l saw a van) >> P(eyes awe of an)

Summarization, Q&A, etc.

Probabilistic Language Models

The main task: compute the probability of a sentence or sequence of words:
P(W) = P(W4,W5,W3,W4,Ws...W,)
Subtask: compute the conditional probability of the next word
P(ws | Wq,Wo,W3,W,) “The weatheris ? *
A model that computes either of these:
P(W) or P(w,|wWq{Ws...Wq1)

is called a probabilistic language model (often, just “language model”).

Probabilistic Language Models

You have seen these before!

Google

what is the |

{=

what is the weather

what is the meaning of life

what is the dark web More probab|e_
what is the xfl

what is the doomsday clock

what is the weather today

what is the keto diet

what is the american dream

what is the speed of light

what is the bill of rights

Google Search I'm Feeling Lucky

Probabilistic Language Modeling

It is possible to apply this framework to any sequence, e.g.,

e Letters in a word; *

Pitches in a melody;

Phonemes in a voice signal;

Sentences in a paragraph; or

Topics in a discourse.

* This was actually the first use of this model by Markov (1913) as an example of the new
concept of Markov Chains; also used by Shannon (1948) in his foundational paper on
Information Theory. Itis possible to apply this model to spell check (a good project!).

Probabilistic Language Modeling

How to compute P(W)?

How to compute this joint probability:
P(| went to their house on Sunday)

Intuition: let’s rely on the Chain Rule of Probability

Calculating Probabilities

Recall the definition of conditional probabilities

o(A|B) = P(B,A) / P(B) Rewriting: P(B,A) = P(B) - P(A|B)

For this LM, we will think of

Conditional Probability Formula B,A as a sequence:
/ / ~ P(ANnB)
) 9% /_/) P(A|B) = P(B) B happens, then A happens.
e — |‘
O P(A) Probability that A ocours given Thus, P(A[B) = “9|Ver? that B
0] P(B) that B has already occured has happened, what is the

i "0
O P(AN B) probablity that A happens™

Calculating Probabilities

» Recall the definition of conditional probabilities

0(B|A) = P(A,B) / P(A) Rewriting: P(A,B) = P(A) - P(BJA)

= More variables:

P(A,B,C,D) = P(A) x P(B|A) x P(C|A,B) x P(D|A,B,C)

= General Chain Rule;

= P(Xq,X2,X3,...,X,) = P(X4) X P(X3|x1) X P(X3]X1,Xp) X ... X P(Xp[Xy,...,Xq.1)

Calculating Probabilities

The Chain Rule applied to compute joint probability of words in sentence:

“I went to their house on Sunday.”

Pww,...w)= HP(WZ. lww,...w,_)

1<i<n

P(| went to their house on Sunday.) =
P(l) X P(went|l) X P(to|lwent) X P(their|lwentto)
X P(house | | went to their) X P(on | | went to their house)

x P(Sunday | | went to their house on)

Calculating Probabilities

How to estimate these probabilities?

Could we just count and divide?

P(Sunday | | went to their house on)

Count(| went to their house on Sunday)

Count(| went to their house on)

Calculating Probabilities

Can we just count? Not realistic:

In an infinite set of sentences, the probability of any distinct sequence of words
is 0. So a data set is a small sample which hopefully represents the essential

features of the language.

But realistic data sets never have enough sample sequences, and sequences
might be very long or simply not exist in your data.

“I have been here before,” | said; | had been there before; first with Sebastian more than twenty years ago on a
cloudless day in June, when the ditches were white with fools’ parsley and meadowsweet and the air heavy with all
the scents of summer; it was a day of peculiar splendor, such as our climate affords once or twice a year, when leaf
and flower and bird and sun-lit stone and shadow seem all to proclaim the glory of God; and though | had been there
so often, in so many moodes, it was to that first visit that my heart returned on this, my latest.” Evelyn

Waugh: Brideshead Revisited, first sentence.

Calculating Probabilities

Markov Assumption: Finite history!
Only consider N-1 words

of left context, for some fixed N.

So,ifN=2
| went to their house on Sunday

| went
went to
to their
their house
house on
on Sunday

Andrei Markov

Terminology: An
N-Gram is a sequence
of N contiguous words
from the data set.

unigram = 1-gram,
bigram = 2-gram,
trigram = 3-gram, etc.

Calculating Probabilities

Markov Assumption:

Only consider N-1 words

of left context, for some fixed N.

Andrei Markov
IfN=3
| went to their house on Sunday

| went to
went to their
to their house
their house on
house on Sunday

Calculating Probabilities

Markov Assumption: Only consider N-1 words of left context.

Thus, for a sequence of length M,

Pwiw; ... wy) ~ H P(w;|lwi—N41 ... wi—1)
N<i<M-N

Calculating Probabilities

Bigram Example (N = 2)

P(<s> | went to their house on Sunday </s>)=
P(l|<s>)xP(went|1)x P(to | went)x P(their | to)

x P(house | their) x P(on | house)

x P(Sunday | on) x P(</s> | Sunday)

C(<s>1)
P(1|<s>) ~ Cl<s>) Note that this calculation
involves finding the number of
C(I went) occurrences of an N-gram and

P(went |1) =
(1) C(I) of an (N-1)-gram (the prefix)!

Calculating Probabilities

Trigram Example (N = 3)

P(<s> | went to their house on Sunday </s>)=
P(l|<s>)xP(went|1)x P(to | went)x P(their | to)

x P(house | their) x P(on | house)

x P(Sunday | on) x P(</s> | Sunday)

C(<s>1went)
C(<s>1)
C(Iwentto)
C(Iwent)

P(went | <s>1) =

P(to|Iwent) =

Calculating Probabilities

Remarks:

This is almost trivial to code after you have separated your text into words and
sentences.

For small N, it will be reasonably efficient.

BUT, it does NOT capture the recursive/nesting structure inherent in complex
sentences:

My friend Bill, who went to the same high school that | did —Pennsbury, which is
in Fairless Hills in PA—Ilives in his car, and he called me yesterday (or the day
before, | forget).

Calculating Probabilities

An example

Pw, lw,_)=

c(w,_,,w.)

c(w,_,)

<s>| am Sam </s>
<s> Sam | am </s>
<s> | do not like green eggs and ham </s>

s}
N
Q
=
Q

2
|

P9
|
n
]
Q.
0O
H

|

o= It

|

Google Book N-grams

" https://books.google.com/ngrams

Q_ Natural Language Processing X ®@

1800 - 2019 ~ English (2019) ~ Case-Insensitive Smoothing ~

0.0000300% -
0.0000280% -
0.0000260% - Natural Language Processing
0.0000240% -
0.0000220% -
0.0000200% -
0.0000180% —
0.0000160% -
0.0000140% -
0.0000120% -
0.0000100% -
0.0000080% -
0.0000060% -
0.0000040% -
0.0000020% -

0-0000000% T 1 1 1 1 I 1 1 I T T
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

https://books.google.com/ngrams

Google Book N-grams

" https://books.google.com/ngrams

Google Books Ngram Viewer :

Q, [Steam Engine X ®

1800 - 2019 ~ English (2019) ~ Case-Insensitive Smoothing v

0.0001000% -
0.0000900% -
0.0000800% -
0.0000700% -
0.0000600% -
0.0000500% -
0.0000400% -
0.0000300% -
0.0000200% -

0.0000100% -
Steam Engine

0-0000000% T T T T T T T T T T T
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

(click on line/label for focus)

https://books.google.com/ngrams

Generative Language Models

A clever feature of this model is that it can easily generate sentences.
For bigrams, after calculating the probability of all bigrams appearing in the data.

Pick a probable* bigram <s> w;,

Pick a probable bigram w; w,

... etc. ...

End when you generate a bigram w, </s>

* You may not want to always choose the most likely, or you will not be able to
generate many sentences! So choose randomly from the probability distribution
of next words.

Optional: An Important Practical Issue:

= We do everything in log space!

» Avoid loss of precision from underflow (prob p might
be tiny)

= Adding is much faster than multiplying
* |og is monotonic, so it preserves order (RN}
probs (p = 0): : /

p<q = log(p) <log(q) g
= Can easily recover probs using exp(...) :

A
6|

A

 J

log(p, x p, x p3 x p,) =log p; +1og p, +log p; +log p,

